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In this paper, we introduce algorithms to find the vertex-to-clique (or (V, ζ ))-distance d(v, C ) between a vertex v and 
a clique C in a graph G, (V, ζ )-eccentricity e1 (v) of a vertex v, and (V, ζ )-center Z1(G) of a graph G usingBC -
representation. Moreover, the algorithms are proved for their correctness and analyzed for their time complexity. 
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1 Introduction 
By a graph G = (V,E) we mean a finite undirected connected 
simple graph. |V | and |E| denote the order and size of a graph 
G respectively. A clique of a graph G is a maximal complete 
subgraph of G. For other basic definitions not mentioned in 
this paper, we refer [2, 3]. 
For vertices u and v in a graph G, the distance d(u, v) 
between u and v is the length of a shortest u − v path. For 
subsets A and B of the vertex set V of G, the distance 
between A and B is defined as d(A, B) = min{d(x, y) : x ! A, 
y ! B}. For any vertex v of G, the eccentricity of v is e(v) = 
max{d(v, u) : u ! V }. The radius of G is r = min{e(v) : v ! 
V }. The center of G is Z(G) = {v ! V : e(v) = r}. A vertex in 
Z(G) is called a central vertex. The distance matrix D(G) = 
[dij ] of G is a n × n matrix, where n is the order of G, and dij 
= d(vi, vj ) the distance between vertext vi and the vertex vj in 
G (1 ≤ i ≤ n, 1 ≤ j ≤ n). 
In [4] Santhakumaran and Arumugam introduced and 
studied the following central structures: Let G be a 
connected graph and ζ = {C : C is a clique in G}. For a 
vertex v and a clique C in G, the vertex-to-clique (or (V, ζ))-
distance d(v, C) between the vertex v and the clique C in G 
is defined as d(v, C) = min{d(v, u) : u ! C}. For a vertex v of 
G, (V, ζ )-eccentricity e1(v) of v is e1(v) = max{d(v, C) : C ! 
ζ }. The (V, ζ )-radius r1 of G is r1 = min{e1(v) : v!V }. The 
(V, ζ )-center of G is Z1(G) = {v ! V  : e1 (v) = r1 }. A vertex 
in Z1(G) is called a (V, ζ )-central vertex. 
In [1] Ashok, Athisayanathan and Antonysamy introduced a 
method to represent a subset of a set which is called binary 
count (or BC) representation. That is, if X = {1, 2, 3, 4} is a 
set, then the binary count (or BC) representation of the 
subsets {Ф}, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 
3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, 
{1, 2, 3, 4} of X are (0000), (1000), (0100), (0010), (0001), 
(1100), (1010), (1001), (0110), (0101), (0011), (1110), 
(1101), (1011), (0111), (1111) respectively. Using this BC 
representation, given a graph G with the vertex set V = {1, 2, 

3, . . . , n} and a subset A of V , they introduced an algorithm 
to verify whether the subgraph < A > induced by the set A in 
G is a clique or not. Moreover, a general algorithm is 
introduced to generate all cliques in G and proved the 
correctness of these algorithms and analyzed their time 
complexities. 
Example 1.1    Consider the graph G given in Figure 1.1 
with the vertex set V  = {1, 2, 3, 4, 5}. Then the distance 
matrix D(G) of G is 

 
 

 
Moreover, the set of all cliques in graph G is ζ = {{1, 2}, {1, 
3}, {2, 4}, {3, 4}, {4, 5}}. Now using the algorithms 
discussed in [1], it is easy to verify that the set ζ of all 
cliques in G in BC representation is ζ = {(11000), (10100), 
(01010), (00110), (00011)}. Note that if C is the clique    {3, 
4}, then the BC representation of C is BC(C) = (00110), and 
further BC(C(1)) = BC(C(2)) = BC(C(5)) = 0, and BC(C(3)) 
= BC(C(4)) = 1. That is, BC(C(i)) (1 ≤ i ≤ n) denotes the 
integer (1 or 0) in the ith place in the BC representation of 
the clique C in the graph G. 
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In this paper we introduce algorithms to find (V, ζ)-distance, 
(V, ζ)-eccentricity and (V, ζ)-center in a connected graph G 
of order n(> 1) using BC representation. 
 
2 Vertex-to-Clique Center Algorithms  
First, we introduce an algorithm to find the (V, ζ )-distance 
d(i, C) between a vertex i and a clique C in a graph G using 
BC representation. 
Algorithm 2.1 Let G be a graph with V = {1, 2, 3, . . . , n} 
and ζ = {C : C is a clique in BC representation in G}. 
 
1. Let D(G) = [dij ] be the distance matrix of graph G.  
 
2. Let i ! V  and C ! ζ .  
 
3. if BC(C(i)) = 1 then d(i, C) = 0, goto step 9  
 
4. for j = 1 to n  
 
5. d(i, j) = n  
 
6. if BC(C(j)) = 1 then d(i, j) = dij  
 
7. next j  
 
8. Find d(i, C) = min{d(i, j) : 1 ≤ j ≤ n}  
 
9. return d(i, C)  
 
10. stop  
 
Theorem 2.2 For any vertex i and a clique C in a graph G, 
the Algorithm 2.1 finds the (V, ζ )-distance d(i, C) from the 
vertex i to the clique C. 
Proof. Let G be a graph with V = {1, 2, 3, . . . , n} , ζ = {C : 
C is a clique in BC representation in G}, and D(G) the 
distance matrix of G. Let i ! V and C ! ζ . If the vertex i is a 
vertex of the clique C, then BC(C(i)) = 1 so that the     (V, ζ 
)-distance d(i, C) = 0. If the vertex i is not a vertex of the 
clique C, then BC(C(i)) = 0, then the steps 4 to 6 of the 
Algorithm 2.1 find the distance d(i, j) from the vertex i to the 
vertices j(1 ≤ j ≤ n) of G as follows: If j is a vertex of the 
clique C then BC(C(j)) = 1 otherwise BC(C(j)) = 0. Hence 
d(i, j) = n if BC(C(j)) = 0 and d(i, j) = dij if BC(C(j)) = 1(1 ≤ 
j ≤ n). Then the step 8 of Algorithm 2.1 finds the (V, ζ )-
distance d(i, C) = min{d(i, j) : 1 ≤ j ≤ n} from the vertex i to 
the clique C. 
Theorem 2.3 The distance between vertex i and a clique    C 
in a graph G can be found in O(n) time using    Algorithm 
2.1. 
Proof. It follows from the fact that the step 3 is executed in 
O(1) time, the steps 4 to 7 are executed in O(n) time and 
step 8 is executed in O(n) time in the Algorithm 2.1. 
Example 2.4 Consider the graph G of order n(= 5) given in 
Figure 1.1 and the distance matrix D(G) of G as in the 
Example 1.1. Now using the Algorithm 2.1, let us find the 
(V, ζ )-distance between the vertex i = 1 and the clique       C 
= {1, 2}. Clearly BC(C) = (11000). Since BC(C(i)) = 1, the 
Algorithm 2.1 returns (V, ζ )-distance d(i, C) = 0. Again 
using the Algorithm 2.1, let us find the (V, ζ )-distance   d(i, 
C) between the vertex i = 1 and the clique C = {2, 4}. 
Clearly BC(C) = (01010). Since BC(C(i)) = 0, the Algorithm 

2.1 finds the (V, ζ )-distance d(i, C) = min{d(i, j)  :  1  ≤ j  ≤ 
n}.  Since BC(C(j))  = 0, d(i, j)  = n for j  =  1, 3, 5 and since 
BC(C(j)) = 1, for j = 2, 4, d(i, 2) = di2 = 1 and d(i, 4) = di4 = 
2. Hence the algorithm 2.1 returns (V, ζ )-distance d(i, C) = 
min{d(i, j) : 1 ≤ j ≤ n} = min{d(1, 1), d(1, 2), d(1, 3), d(1, 
4), d(1, 5)} = min{5, 1, 5, 2, 5} = 1. 
Next, we introduce an algorithm to find the (V, ζ )-
eccentricity e1(i) of a vertex i in a graph G of order n using 
BC representation. 
Algorithm 2.5 Let G be a graph with V = {1, 2, 3, . . . , n} 
and ζ = {C : C is a clique in BC representation in G}. 
 
1. Let ζ = {C1, C2, . . . , Cm}.  
 
2. Let i ! V  
 
3. for j = 1 to m  
 
4. Find d(i, Cj ) , by calling Algorithm 2.1  
 
5. next j  
 
6. find e1(i) = max{d(i, Cj ) : 1 ≤ j ≤ m}  
 
7. return e1(i)  
 
8. stop  
 
Theorem 2.6 For a vertex i and the set of all cliques ζ in G, 
the Algorithm 2.5 finds (V, ζ )-eccentricity e1(i). 
Proof. Let G be a graph with V = {1, 2, 3, . . . , n} and       ζ 
= {C1, C2, . . . , Cm} be the set of all cliques in BC 
representation in G. Let i ! V . Then the step 4 of Algorithm 
2.5 finds the (V, ζ )-distance d(i, Cj) between the vertex i and 
every clique Cj(1 ≤ j ≤ m) in G,  and the step  6 of Algorithm 
2.5 finds (V, ζ )-eccentricity e1(i) = max{d(i, Cj ) : 1 ≤ j ≤ 
m}. Hence the theorem. 
Theorem  2.7 The Algorithm 2.5 finds (V, ζ )-eccentricity 
e1(i) of vertex i in a graph G in O(mn) time. 
Proof. By Theorem 2.3, the time complexity of the step 4 in 
the Algorithm 2.5 is O(n), so that the steps 3 to 5 in the 
Algorithm 2.5 are executed in O(mn) time. The time 
complexity of the step 6 in the Algorithm 2.5 is O(m). Hence 
the theorem. 
Example 2.8    Consider the graph G given in Figure 1.1 
with the vertex set V  and the clique set ζ as in the Example 
1.1. Clearly the order n of G is 5 and the number of cliques 
m in G is 5. Let C1 = (11000), C2 = (10100), C3 = (01010), 
C4 = (00110), C5 = (00011), and i = 1 ∈  V . Now we find the 
(V, ζ )-eccentricity e1(i). By calling the Algorithm 2.1 m 
times, the step 4 of Algorithm 2.5 finds the (V, ζ )-distances 
d(i, C1) = 0, d(i, C2) = 0, d(i, C3) = 1, d(i, C4) = 1 and     d(i, 
C5) = 2. Then the step 6 of Algorithm 2.5 finds the    (V, ζ )-
eccentricity e1(i) = max{0, 0, 1, 1, 2} = 2. 
Finally, we introduce an algorithm to find the (V, ζ )-center 
Z1(G) of a graph G of order n using BC representation. 
Algorithm 2.9 Let G be a graph with V = {1, 2, 3, . . . , n} 
and ζ = {C : C is a clique in BC representation in G}. 
 
1. Let ζ = {C1, C2, . . . , Cm}  
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2. Let Z1(G) = Ф.  
 
3. for i = 1 to n  
 
4. Find e1(i), by calling Algorithm 2.5.  
 
5. next i  
 
6. Find r1  = min{e1(i) : 1 ≤ i ≤ n}  
 
7. for i = 1 to n  
 
8. if e1(i) = r1  then Z1(G) = Z1(G) U {i}.  
 
9. next i  
 
10. Stop  
 
Theorem 2.10 For a graph G, the Algorithm 2.9 finds      (V, 
ζ )-center Z1 (G) of G. 
Proof. Let G be a graph with V = {1, 2, . . . , n} and           ζ 
= {C1, C2, . . . , Cm } be the set of all cliques in their BC 
representation in G. The step 4 of Algorithm 2.9, finds     (V, 
ζ )-eccentricity e1(i) for all i ∈  V (1 ≤ i ≤ n). Then the step 6 
finds (V, ζ )-radius r1 = min{e1(i) : i ∈  V } of G, and the 
steps 7 to 9 find (V, ζ )-center Z1(G) = {i ∈ V : e1(i) = r1}. 
Thus the Algorithm 2.9 finds (V, ζ )-center Z1(G) of G. 
Theorem 2.11 The (V, ζ )-center Z1(G) of a graph G can be 
obtained in O(mn2) time using Algorithm 2.9. 
Proof. By Theorem 2.7, the computing time for step 4 of the 
Algorithm 2.9 is O(mn) so that time complexity for the steps 
3 to 5 of the Algorithm 2.9 is O(mn2). The step 6 of the 
Algorithm 2.9 finds r1 in O(n) time and the steps 7 to 9 of 
the Algorithm 2.9 finds Z1(G) of G in O(n) time. Hence the 
theorem. 
Example 2.12 Consider the graph G given in Figure 1.1 as 
in the Example 1.1. Clearly the vertex set of G is V = {1, 2, 
3, 4, 5} and the set of all cliques in G is ζ = {(11000), 
(10100), (01010), (00110), (00011)}. Now we find the     (V, 
ζ )-center Z1(G). By calling the Algorithm 2.5 n times, the 
step 4 of Algorithm 2.9 finds the (V, ζ )-eccentricities  e1(1) 
= 2, e1(2) = 1, e1(3) = 1, e1(4) = 1, and e1(5) = 2. The step 6 
of Algorithm 2.9 finds the (V, ζ )-radius r1 = min{e1(i) : 1 ≤ i 
≤ n} = 1. Finally, the step 8 of Algorithm 2.9 finds the (V, ζ 
)-center Z1(G) = {i ∈  V : e1(i) = r1 } =  {2, 3, 4}. 
3  Conclusion 
In this paper we have developed sequential algorithms to 
find the (V, ζ )- central structures in a graph G and these 
algorithms may be used in networking, data mining and 
cluster analysis. 
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